Coexpression of Nuclear Receptors and Histone Methylation Modifying Genes in the Testis: Implications for Endocrine Disruptor Modes of Action
نویسندگان
چکیده
BACKGROUND Endocrine disruptor chemicals elicit adverse health effects by perturbing nuclear receptor signalling systems. It has been speculated that these compounds may also perturb epigenetic mechanisms and thus contribute to the early origin of adult onset disease. We hypothesised that histone methylation may be a component of the epigenome that is susceptible to perturbation. We used coexpression analysis of publicly available data to investigate the combinatorial actions of nuclear receptors and genes involved in histone methylation in normal testis and when faced with endocrine disruptor compounds. METHODOLOGY/PRINCIPAL FINDINGS The expression patterns of a set of genes were profiled across testis tissue in human, rat and mouse, plus control and exposed samples from four toxicity experiments in the rat. Our results indicate that histone methylation events are a more general component of nuclear receptor mediated transcriptional regulation in the testis than previously appreciated. Coexpression patterns support the role of a gatekeeper mechanism involving the histone methylation modifiers Kdm1, Prdm2, and Ehmt1 and indicate that this mechanism is a common determinant of transcriptional integrity for genes critical to diverse physiological endpoints relevant to endocrine disruption. Coexpression patterns following exposure to vinclozolin and dibutyl phthalate suggest that coactivity of the demethylase Kdm1 in particular warrants further investigation in relation to endocrine disruptor mode of action. CONCLUSIONS/SIGNIFICANCE This study provides proof of concept that a bioinformatics approach that profiles genes related to a specific hypothesis across multiple biological settings can provide powerful insight into coregulatory activity that would be difficult to discern at an individual experiment level or by traditional differential expression analysis methods.
منابع مشابه
P-209: Decreased Expression of Histone Acetyltransferase CDY1 Gene in Testis Tissue May Lead to Decreased Expression of Transition Protein (TNP) and Protamine (PRM) Genes,Causing Male Infertility
Background: Infertility is a complex medical problem. About 15% of couples are infertile, and male infertility being involved in roughly 50% of the cases. Among these, many cases are associated with a severe impairment of spermatogenesis. During the last stage of spermatogenesis (spermiogenesis), sperm chromatin endures complex modifications in which histones are lost and depositioned with tran...
متن کاملP-202: Reduced Expression of JMJD1A Histone Demethylase Gene in Testis Tissues of Infertile Men Referred to Royan Institute
Background: Epigenetic modifications are involved in different cellular processes through regulating chromatin dynamics. histone methylation is an important modification that can be dynamically regulated by histone methyltransferase and histone demethylase enzymes. JMJD1A (also known as JHDM2A and KDM3A) is a histone demethylase specific for H3K9me2/me1. JMJD1A is a key epigenetic regulator tha...
متن کاملP-116: Absence of JMJD1A, A Testis- Specific Histone Demethylase, in Tissue Samples of TESE Negative Men
Background During mammalian spermatogenesis unique and dynamic epigenetic events occur leading to chromatin condensation. Through these events, histone demethylases such as JMJD1A play important roles in compaction of sperm chromatin, due to regulation of histone methylation dynamics and alteration of chromatin structure. As �histone methylation� is one of the best-characterized modifications i...
متن کاملEffects of Major Epigenetic Factors on Systemic Lupus Erythematosus
The pathogenesis of systemic lupus erythematosus (SLE) is influenced by both genetic factors and epigenetic modifications; the latter is a result of exposure to various environmental factors. Epigenetic modifications affect gene expression and alter cellular functions without modifying the genomic sequences. CpG-DNA methylation, histone modifications, and miRNAs are the main epigenetic factors ...
متن کاملNew modes of action for endocrine-disrupting chemicals.
Endocrine-disrupting chemicals (EDC) are commonly considered to be compounds that mimic or block the transcriptional activation elicited by naturally circulating steroid hormones by binding to steroid hormone receptors. For example, the Food Quality Protection Act of 1996 defines EDC as those, that "may have an effect in humans that is similar to an effect produced by a naturally occurring estr...
متن کامل